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Introduction 

     Dynamic system modeling has revolutionized the way 

in which novel system architectures are designed and 

evaluated. Yet a system’s design (architecture, component 

sizing, etc.) is only part of what determines a system’s 

ultimate performance. How the system is controlled is 

often of equal importance. This is especially true with 

hybrid systems when power from multiple sources must 

be managed, though it applies to any system in which 

there are multiple state and control combinations which 

yield the desired output. Commonly a design team will be 

tasked with developing and employing a dynamic system 

model to both select a system architecture, and size 

components, with the goal of maximizing some 

performance metric. Too often the control system’s design 

is relegated to second place: a low importance task which 

receives only the minimal effort and attention required to 

achieve a working system model.  

     Once to the point of comparing multiple system 

architectures/component sizing, this lack of focus on the 

control systems begs the question as to whether one 

system design outperforms another due to an inherently 

better configuration, or a more effective control strategy. 

There is certainly a risk that a poor system design with 

an effective control strategy could be chosen over a 

superior system design with an ineffective control 

strategy. While a control strategy may be improved and 

refined in time to be implemented in the final system, 

selection of a poor system design can be difficult to rectify 

as a project progresses. The use of an ineffective control 

scheme should not be viewed as negligence on part of the 

design team, rather it must be understood that developing 

a highly effective control scheme is often a challenging 

task, especially when the development concerns novel 

systems designs which are not well understood. 

     An effective solution to the problem of poor system 

control during the modeling and architecture selection 

phase is to apply a globally optimal controller directly to 

the dynamic simulation models. By using a globally 

optimal control scheme the influence of control on system 

performance can be eliminated, thereby enabling a fair 

system comparison. The most effective means of 

achieving optimal system control is through a technique 

known as dynamic programming. This white paper 

discusses the benefits of using dynamic programming as 

a design tool throughout a product’s development, using 

a hybrid powertrain as an illustrative example.       

             

 

  

 

 

Improving System Design and 
Performance Through 

Globally Optimal Control 
 

Advantages of Dynamic Programming 

Dynamic programming (DP) is powerful analytical tool 

which yields significant benefits when applied to dynamic 

simulation models. Some uses of DP include:     

• Determining a system’s best possible performance. 

• Eliminating the influence of controls on system 

efficiency.  

• Ensuring a fair and impartial comparison between 

system architectures and component sizing. 

• Eliminating the risk of arriving at the wrong 

conclusion due to a poor system control.   

• Discovering effective, but perhaps counterintuitive, 

control schemes. 

• Developing control strategies based on the globally 

optimal results.  

• Baselining implementable control strategies against 

the globally optimal solution.  

Dynamic programming has one key benefit over other 

optimal control approaches: 

• Guarantees a globally optimal state/control trajectory, 

down to the level the system is discretized to. 

Dynamic programming also has several drawbacks which 

must be considered, including:   

• Requires complete a-priori cycle knowledge (i.e. full 

knowledge of the upcoming cycle). As such DP is not 

an implementable control strategy.  

• Is computationally expensive to solve as the required 

number of calculations increase exponentially with 

each additional state and control evaluated (curse of 

dimensionality). This disadvantage is somewhat 

mitigated by the highly parallelizable nature of DP.  

 



 

Czero White Paper                               www.czero-solutions.com         2 

Why do Effective Control Strategies 

Matter when Modeling? 

High fidelity dynamic simulation models have become 

an essential and enabling tool in the development of 

innovative system architectures and technologies. Yet 

the dynamic model itself, which describes how a 

system’s states will respond to a given set of control 

efforts, is only part of the story. Of equal importance is 

often how the system is controlled.  

Take a power-split electric hybrid vehicle as an 

example. For a driver, instantaneous powertrain 

performance may be evaluated simply against its ability 

to provide the desired level of torque to the wheels 

when requested. Yet the system designers know that 

this requested torque may be achieved in numerous 

ways by varying the power split between the 

mechanical and electrical paths. From a strict 

instantaneous performance perspective, the choice of 

optimal power split is likely inconsequential. However, 

from an instantaneous efficiency perspective, the 

efficiency of each component (e.g. engine, battery, 

electric motors, etc.) within the powertrain must be 

considered holistically to determine the optimal power 

split. Figure 1 illustrates this point with a comparison 

between transmission efficiency and overall powertrain 

fuel consumption for an output-coupled power-split 

transmission operating under steady state conditions 

with no power being absorbed or supplied by the energy 

storage device (Sprengel, 2015).  

 
Figure 1: Powertrain vs. transmission efficiency 

 

In this case it is more effective to operate the 

transmission in the less efficient power recirculation 

mode so that the overall powertrain operates in a more 

fuel-efficient manner.            

While instantaneous optimization may be able to 

provide an optimal operating point for any given 

instance in time (as could be achieved by using Figure 

1), this is often different from the globally optimal time 

domain solution. Returning to the electric power-split 

vehicle example, at a given point in time the 

instantaneously optimal control strategy from a fuel 

economy perspective may be to meet the required 

torque by maximizing the power discharged from the 

battery. However, such a control strategy could deplete 

the battery before the vehicle arrives at its destination, 

causing the powertrain to rely solely on the engine for 

the remainder of the trip. This would almost certainly 

decrease the overall cycle efficiency relative to what 

could have been achieved if the powertrain were more 

effectively controlled. The system designers must 

balance not only the power split between the 

mechanical and electric paths to achieve the highest 

possible powertrain efficiency, but must also balance 

the charging and discharging of the battery to maximize 

overall cycle efficiency.  

These efforts are further complicated by the need to 

account for and control the system relative to events 

which have not yet occurred. For example, there will 

likely be different optimal control strategies for a 

vehicle which is about to drive up a long hill, versus one 

which is about to come to a rapid stop. To maximize 

cycle efficiency the powertrain must begin preparing 

for each of these events before they occur (e.g. storing 

extra energy before driving up the hill, or discharging 

energy before braking to ensure adequate capacity 

exists to capture and store the vehicle’s kinetic energy). 

The use of complete a-priori cycle knowledge is a key to 

DP’s ability to determine and guarantee globally 

optimal solutions as will be discussed in the next 

section.  

To further illustrate the influence of control on system 

performance, Table 1 show a comparison between two 

power management controllers relative to the globally 

optimal solution for a plug-in electric hybrid SUV 

achieved through DP (Gong et al., 2008).  
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Table 1: Fuel economy comparison (Gong et al., 2008) 

Drive Cycle UDDS1 US062 
ECE-

EUDC3 

HW-

FET4 

Control Strategy Fuel Economy [l/100 km] 

DP Charge Depletion  4.27 4.47 3.76 2.88 

Depletion Sustenance 6.10 9.80 6.30 5.70 

Rule-Based 4.30 10.50 7.80 7.90 

 
Percent Decrease in Fuel 

Economy Relative to DP [%] 

DP Charge Depletion  - - - - 

Depletion Sustenance  42.9 119.2 67.6 97.9 

Rule-Based  0.7 134.9 107.4 174.3 

1. Urban Dynamometer Driving Schedule 
2. US06 Supplemental Federal Test Procedure 

3. Economic Commission for Europe – Extra Urban Driving Cycle 

4. Highway Fuel Economy Test 

 

Clearly apparent here are the significant differences 

between the globally optimal DP strategy, and the other 

two control strategies. It is also worth noting that for 

the UDDS cycle the rule-based control scheme achieved 

results very close to the globally optimal solution. This 

demonstrates that implementable controllers, when 

well designed, can also achieve near optimal 

performance. Yet when this same rule-based control 

scheme was evaluated on cycles other than the UDDS 

cycle, it achieved significantly worse results 

highlighting its limitations. In fact, one could imagine 

that if such a hybrid vehicle were controlled poorly, that 

the resulting fuel economy could be worse than a 

convention non-hybrid vehicle. This could lead to an 

incorrect perception of the technology when in fact the 

control scheme, not the base system architecture, was 

causing the poor system performance.     

The purpose of this discussion on power management 

for hybrid vehicles is not intended to explore the pros 

and cons of various control strategies, but rather to 

illustrate the complexity of such control and how 

ineffective control schemes may provide an inaccurate 

perception of a system during the modeling and 

architecture selection phase. While this paper 

illustrates DP’s utility for a hybrid vehicle power 

management, optimal control through DP can be 

applied to many other applications as well. Ultimately 

any system whose states and controls are not 

deterministic (i.e. fully defined) may benefit from DP.   

How Dynamic Programming Works 

Dynamic programming is based Richard Bellman’s 

Principle of Optimality: “An optimal policy has the 

property that whatever the initial state and initial 

decision are, the remaining decisions must constitute 

an optimal policy with regard to the state resulting 

from the first decision.” (Bellman, 1957) Rephrased: 

Optimization of the future does not depend on what 

occurred in the past. This basic principle has been 

extended and implemented in a wide variety of optimal 

control algorithms. Many of these approaches rely on 

solving the Hamilton–Jacobi–Bellman partial 

differential equation for continuous time systems. 

However, using partial differential equations often 

requires a rigid formulation of the state space equations 

which largely precludes the use of lookup tables, non-

continuous functions, and other inequalities and 

constraints which are commonly used in dynamic 

simulation models. Another class of DP algorithms 

discretize the system and implement a numerical 

approach to solve the optimal control problem. It is this 

discretized DP formulation which is well suited for the 

class of dynamic system models discussed in this work. 

The basic operation of a discretized DP algorithm can 

be explained by first applying it to a multistage 

decision-making process. Bellman’s principle of 

optimality is explained graphically through Figure 2.  

 
Figure 2: Multistage decision process 

In this example J represents the cost of transition 

between discrete states a, b, c, and d. Here two possible 

paths exist between states a and d: a-b-c-d and a-b-d 

with the optimal path (denoted by *) defined as: 

𝐽ad
∗ = 𝐽ab +min(𝐽bcd + 𝐽bd) 

Applying the principle of optimality yields the assertion 

that if b-c-d is the optimal path between b-d then a-b-c-

d is the optimal path between a-d. While this may 
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appear to be a trivial solution, when applied to larger 

and more complex problems it has powerful 

ramifications.   

Bellman formed a computational method (algorithm) 

known as DP by extending his principle of optimality to 

a sequence of decisions. By using the concept that 

wherever an optimization is begun, the remaining path 

must be optimal, Bellman subdivided complex 

multistage decision problems into a series of simpler 

one stage sub problems. Beginning with the final state, 

Bellman worked backwards through the decision 

process to obtain the globally optimal solution with a 

computational expense far less than direct 

enumeration. This process can be explained graphically 

using Figure 3. Here the transitional costs between each 

state have been given numerical values as denoted on 

the figure.   

 
Figure 3: Multistage DP example, step 1 

Using direct enumeration requires the evaluation of all 

8 possible paths between a and h:  

𝐽𝑎ℎ
∗

= 𝑚𝑖𝑛

(

 
 

𝐽𝑎𝑏 + 𝐽𝑏𝑑 + 𝐽𝑑𝑓 + 𝐽𝑓ℎ , 𝐽𝑎𝑐 + 𝐽𝑐𝑑 + 𝐽𝑑𝑓 + 𝐽𝑓ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑑 + 𝐽𝑑𝑔 + 𝐽𝑔ℎ, 𝐽𝑎𝑐 + 𝐽𝑐𝑑 + 𝐽𝑑𝑔 + 𝐽𝑔ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑒 + 𝐽𝑒𝑓 + 𝐽𝑓ℎ , 𝐽𝑎𝑐 + 𝐽𝑐𝑒 + 𝐽𝑒𝑓 + 𝐽𝑓ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑒 + 𝐽𝑒𝑔 + 𝐽𝑔ℎ, 𝐽𝑎𝑐 + 𝐽𝑐𝑒 + 𝐽𝑒𝑔 + 𝐽𝑔ℎ)

 
 

 

DP takes a different approach and subdivides the 

problem into multiple stages (Figure 4). The DP 

algorithm begins one stage before the final stage (Stage 

4) and records the optimal transitional cost J* between 

each state in the current stage, and the final stage 

(Stage 5) (a trivial process at this point as only one 

possible decision exists for each state).   

 
Figure 4: Multistage DP example, step 2 

Next the DP algorithm steps back one stage (to Stage 3) 

and repeats the optimization process. However instead 

of optimizing the path all the way from Stage 3 to Stage 

5, the DP algorithm has only to optimize between Stage 

3 and Stage 4 as the optimal path from Stage 4 to Stage 

5 has already been determined and recorded. The cost 

which is recorded at each state in Stage 3 contains not 

only the transitional cost between Stage 3 and Stage 4, 

but also the cost to finish from Stage 4 to the final stage. 

This cumulative cost to finish is one of the key concepts 

of DP and is known as the embedding principle. It is this 

running tally of the optimal cost to finish which enables 

the multistage decision process to be subdivided into a 

series of one stage sub problems. This process of 

optimizing each stage in turn repeats recursively until 

the initial decision is reached (Figure 5).   

 
Figure 5: Multistage DP example, step 3 

Once the initial state is reached, the backwards 

stepping component of the DP algorithm is concluded. 

In order to extract the optimal decision sequence, one 

needs merely to follow the optimal decisions forward 

from state to state. DP tabulates not only the optimal 

decision path from the first state to the last, but also the 

optimal decision path from any state to the final state. 

Bellman’s principle of optimality provides a sufficient 

condition for optimality. That is because all possible 
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optimal candidate decision paths are analyzed, the 

optimal path found must be the globally optimal path. 

More insight into global optimality can be found by once 

more investigating the graphical example. Now a 

forward stepping instantaneous optimization algorithm 

has been used to find the instantaneously optimal path 

from state a to h. At each state this algorithm chooses 

the decision with the lowest instantaneous cost yielding 

the dashed path shown in Figure 6.  

 
Figure 6: Multistage DP example, step 4 

Here the instantaneous optimization algorithm 

followed the path a-b-d-f-h with a cost of 10, while the 

globally optimal path a-b-d-g-h found by DP (bold lines) 

resulted in a cost of 7. Of interest is the path taken by 

both algorithms from Stage 3 to Stage 4. Here both 

algorithms began on State d, but while the 

instantaneous optimal path d-f follows the lowest cost 

decision from Stage 3 to Stage 4, the globally optimal 

path d-g follows a trajectory with a higher decision cost. 

This example illustrates that a globally optimal path 

may require locally suboptimal decisions to yield the 

minimum overall cost.  

DP’s predominant advantage over direct enumeration is 

its substantial reduction in computational expense. 

Table 2 compares the computation expense of both 

methods assuming S=10 states and C=5 controls. Even 

though the number of stages, states, and controls are at 

least an order of magnitude smaller than the values 

commonly required in DP evaluations of dynamic 

systems, the computational expense of direct 

enumeration is already infeasible. 

Table 2: Comparison of computational expense between 

DP and direct enumeration (for 10 states and 5 controls) 

Number 

of 

stages 

Calculations 

required by 

DP 

Calculations required by 

direct enumeration 

1 50 50 

10 500 122,070,300 

25 1,250 3,725,290,298,461,914,050 

𝑁 𝑆 ∙ 𝐶 ∙ 𝑁 ∑[𝑆 ∙ 𝐶𝐾]

𝑁

𝐾=1

 

 

Applying Dynamic Programming to 

Discrete Time Optimal Control 

Thus far a general overview of DP has been given. This 

process will now be expanded upon for the specific case 

of discrete time optimal control. Discrete time DP 

requires a system to be expressed using a state space 

representation. In the state space system key system 

parameters and controls are represented by state 

variables xi(t), and control inputs ui(t), respectively. 

The state variables represent the minimum number of 

parameters which must be known to fully describe a 

system at any point in time, while control inputs refer 

to system inputs which serve to alter these states. 

Together the set of all states and controls for a system 

are expressed through state vector X(t) and control 

vector U(t). 

𝑋(𝑡) ≡ [𝑥1(𝑡)  𝑥2(𝑡) ⋯ 𝑥𝑛(𝑡)  ]
𝑇 

𝑈(𝑡) ≡ [𝑢1(𝑡)  𝑢2(𝑡) ⋯ 𝑢𝑛(𝑡)  ]
𝑇 

When the state and controls are related by 1st order 

differential equations, a nonlinear time varying 

physical system can be described by the state equation: 

𝑥̇(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

However, it is also permissible to describe the system 

through any type of model (e.g. lumped parameter, 

distributed parameter, black box, etc.) as long as the 

value of appropriate states and controls can be 

extracted and applied at the necessary points in time.  

DP requires both the continuous time and states of a 

continuous time optimal control problem to be 
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discretized. The discretized time can be equated to the 

stages in the aforementioned graphical example, while 

the system’s discretized states represent the discrete 

states within each stage. DP does not require controls 

to be discretized, however doing so generally improves 

computational efficiency for certain classes of 

problems.  

The principle of optimally is expressed mathematically 

for discrete time dynamic programming through the 

functional recurrence equation of DP: 

𝐽𝑁−𝐾,𝑁
∗ (𝑥(𝑁 − 𝐾))

= 𝑚𝑖𝑛
𝑢(𝑁−𝐾)

{𝑔𝐷 (𝑎𝐷(𝑥(𝑁 − 𝐾), 𝑢(𝑁 − 𝐾)))
⏞                    

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡

+ 𝐽𝑁−(𝐾−1),𝑁
∗ (𝑎𝐷(𝑥(𝑁 − 𝐾), 𝑢(𝑁 − 𝐾)))
⏞                        

𝐶𝑜𝑠𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

} 

Where N is the number of stages, K is the stage counter, 

gD is the transitional cost function to be minimized 

between the current and subsequent state, and aD 

represents the system dynamics.  

To better illustrate the application of DP to 

state/control trajectory optimization, a series hydraulic 

hybrid transmission (Figure 7) will now serve as a 

reference system. 

 
Figure 7: Series hydraulic hybrid 

Appling DP to the series hybrid begins by forming the 

state and control vectors: 

𝑋 ≡ [𝜔𝑒𝑛𝑔   𝜔𝑤ℎ𝑒𝑒𝑙    𝑃𝑎𝑐𝑚   𝑃𝐿𝑃]
𝑇
   𝑈 ≡ [𝑢𝑒𝑛𝑔   𝛽1   𝛽2]

𝑇
 

Where ωeng is the engine speed, ωwheel is the wheel 

speed, pacm is the pressure of the high-pressure 

accumulator, pLP is the pressure of the low-pressure 

system, ueng is the engine throttle, and 1, 2 are the 

displacements of Units 1 and 2 respectively.  

As the computational expense of DP grows 

exponentially with the addition of each state and 

control, it is highly desirable to eliminate superfluous 

states and controls whenever possible. In this example 

the powertrain will be optimized over a predefined 

drive cycle. As such the wheel speed ωwheel is known as 

a function of time and can thus be eliminated from the 

state vector. The required wheel torque can also be 

determined as a function of time using the predefined 

drive cycle and a vehicle dynamics model. Consequently 

Unit 2’s displacement 2 becomes a function of time and 

accumulator pressure and is likewise removed from the 

control vector. Finally, to reduce computational 

expense, it is assumed that the low-pressure system pLP 

maintains a constant set pressure. These 

simplifications result in the following reduced state 

space vectors: 

𝑋 ≡ [𝜔𝑒𝑛𝑔   𝑃𝑎𝑐𝑚]
𝑇
   𝑈 ≡ [𝑢𝑒𝑛𝑔   𝛽1]

𝑇
 

Configuring the system for DP continues with 

determining how to discretize the continuous states and 

time (i.e. split continuous variables into the descrete set 

of values requried by DP). This is an important step as 

the level of discretization has a direct impact on both 

solution accuracy (which roughly converges 

asymptotically as discretization increases) and 

computational expense (which increases linearly as 

discretization increases). Thus close attention must be 

paid to the level of discretization in order to balance 

acceptable solution accuracy with feasible 

computational expense. 

When discretizing states the concept of accessibility is 

useful. Accessibility refers to the ability of one state to 

transition to other states within a single time step. A 

state with low accessibility may only be capable of 

transitioning to a few different states (or maybe none 

at all) within a given time step. Whereas a state with 

high accessibility would be able to reach many different 

states within the same time frame. Using the series 

hydraulic hybrid as an example, the maximum change 

in system pressure during a single DP time step is 

dicated by system dnyamics. The graularity of the 

system’s pressure discritization must therefore be 

sufficently fine as to allow the system pressure to move 
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between states within a single DP time step. Failure to 

sufficently discritizte system pressure could result in 

the DP algorithm falsly indicating that a constant 

system pressure was optimal, when in acutality this 

finding was a result of poor state discritzation. An 

example of accessibility is given in Figure 8. 

 
Figure 8: Dynamic programming accessibility 

In general, states which change slowly required a 

higher level of discretization than states which change 

quickly. For the series hybrid example the following 

state discretizations are reasonable:  

𝑋 ≡ [
𝜔𝑒𝑛𝑔
𝑃𝑎𝑐𝑚

] [
750 − 4000 𝑟𝑝𝑚
145 − 370 𝑏𝑎𝑟

] 

[
750: 25: 1000, 1050: 50: 1500, 1600: 100: 4000

145: 5: 370
] 

Note the engine speed has a non-uniform discretization. 

This enables the designer to achieve greater accuracy in 

areas which are of greater interest (e.g. low engine 

speed) while reducing computational expense in areas 

which are unlikely to see much operation (e.g. high 

engine speed).  

Another factor which must be determined is the degree 

to which time is discretized. While a finer time 

discretization will improve solution accuracy, it will 

also limit how much a given state can change within a 

time step (thus requiring an even finer state 

discretization). Each discrete time step becomes a stage 

within the DP algorithm where controls are optimized 

and held constant for the entire time step. This does not 

mean the model (equations) must be solved using the 

DP time step. Rather any time step may be used for the 

model solvers so long as the model is simulated for the 

duration of the DP time step.  

An example of a backwards stepping time discretization 

is shown in Figure 9. Note the time discretization 

shown in this figure is highly exaggerated to 

demonstrate the concept; the time discretization should 

actually be substantially smaller to accurately capture 

the drive cycle dynamics.  

 
Figure 9: Dynamic programming time discretization 

For powertrain optimization a one second DP time step 

is generally appropriate due to the system’s relatively 

slow dynamics. The example series hybrid transmission 

will be optimized over the industry standard UDDS 

cycle. This 1369 second long drive cycle (Figure 10) is 

indicative of urban driving and well suited for 

evaluating hybrid powertrains. 

 
Figure 10: Urban Dynamometer Driving Schedule 

With the state and time discretizations finalized, 

several matrices must now be initialized. These include 

the optimal cost matrix J*, and two optimal control 

matrices U* (one for each state). Note the dimensions 

of the matrices correspond to the discretization of the 

state and time vectors (t:1370, eng:46, Pacm:46).   

𝐽𝑁,𝑥1,𝑥2
∗ = 𝐽1370,46,46

∗ = [ ] 

𝑈(1)𝑁,𝑥1,𝑥2
∗ = 𝑈(1)1370,46,46

∗ = [ ] 

𝑈(2)𝑁,𝑥1,𝑥2
∗ = 𝑈(2)1370,46,46

∗ = [ ] 

DP optimizes the controls for each state at every DP 

time step. While many different optimization 

techniques would be valid for solving a single step of 

the functional recurrence equation, a full factorial 

search of discretized controls has proven to be the 

fastest approach for the DP algorithm used in this work. 

Controls are discretized using similar principles as the 

states. However, states which change fast (i.e. a stiff 

system) generally need finer control discretization than 
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states which change slowly to enable accurate 

optimization. Engine dynamics are a good example of a 

stiff system: even small discrepancies between the 

combustion and load torques will result in a significant 

change in engine speed over the DP time step. Such a 

system would require a very high level of discretization 

on the throttle to enable a constant engine speed to be 

maintained in the face of varying loads. An alternative 

used in this work is to replace the throttle control with 

a desired engine speed 𝜔eng_des. The enables a controller 

within the simulation model to continuously control the 

engine throttle to track the reference engine speed, all 

while requiring less control discretization. Together the 

controls were discretized as follows:       

𝑈 ≡ [
𝜔𝑒𝑛𝑔_𝑑𝑒𝑠
𝛽1

] [
750 − 4000 𝑟𝑝𝑚
0 − 100% 

] 

 [
750: 25: 1000, 1050: 50: 1500, 1600: 100: 4000

0: 5: 100
] 

With the transmission model constructed, states and 

controls identified and discretized, and the 

performance metric specified (minimizing fuel 

consumption), the DP algorithm begins one time step 

before the final time step. The model is then initialized 

at each combination of discrete states     

(𝜔eng(46) 𝑥 𝑃acm(46) = 2116) before every combination 

of discrete controls is applied in turn  

(𝜔eng_des(46) 𝑥 𝛽1(21) = 966) and the system is 

simulated forward in time for one DP time step. 

For this stage (N-1) the total cost being minimized is 

simply the transitional fuel consumption between the 

current stage and the final stage. After all sets of 

controls are applied for a specific state, the DP 

algorithm selects and records the minimum cost for 

that specific state in the J* matrix. The associated 

optimal control values (𝜔eng_des, 𝛽1), which resulted in 

this minimum cost, are also recorded in their respective 

optimal control matrices U* for the state which was just 

evaluated. This projection of states by means of various 

controls is illustrated in Figure 11.  

The optimal controls are those which minimize both the 

transitional fuel consumption, and the cost to reach the 

end of the cycle. (While at stage N-1 the transitional fuel 

consumption, and the cost to reach the end of the cycle, 

are one in the same. In subsequent time steps (N-2, N-

3, …) the transitional fuel consumption will be 

determined based on where the project state lands on 

the cost to finish matrix J*).  

 
Figure 11: Dynamic programming state projection 

Once all the states have been optimized, the DP 

algorithm steps back in time to stage (N-2) and begins 

again. Once again the model is initialized at a given 

state and controls are applied and simulated for a single 

time step. However now the resulting states after the 

DP time step (now at stage N-1) are used to determine 

the cost to finish by referencing the optimal cost to 

finish from time step N-1 to the final time step 

contained within the J* matrix. 

This recursive process is repeated from stage to stage 

until the initial time step is reached, thus concluding 

the backwards stepping portion of the DP algorithm. 

Once the initial time step is reached both the J* and U* 

matrices are filled. However, the J* matrix is of little 

use as the cost to finish values provide little 

information regarding the optimal path through the 

states. The only information which can be extracted 

from the J* matrix is the optimal initial states and the 

minimum cycle cost. In order to determine the optimal 

state trajectories the model must be run forward in 

time using the optimal U* controls to control the 

transmission. This is most easily accomplished by 

constructing a lookup table for the U* matrices where 

the current states and time are inputs, and the controls 

are outputs. This forward-facing process further 

improves accuracy by continually interpolating 

between the discrete points optimized in the backwards 

stepping algorithm. When the DP algorithm is followed 

as specified, the results are guaranteed to be globally 

optimal down to the level the system is discretized. A 

sufficient level of discretization should be used such 
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that the DP results nearly converge with the true 

globally optimal solution. Determining the appropriate 

levels of discretization comes from experience. One 

simple (though computationally expensive) method of 

determining convergence is to increase the level of 

discretization and see how close the two results are.  

A flowchart of the DP algorithm is shown in Figure 12.   

 
Figure 12: Dynamic programming flowchart       

The results of this final run are shown in Figure 13 for 

the series hydraulic hybrid (Sprengel and Ivantysynova, 

2014). An example of how the DP algorithm may use a-

prior cycle knowledge can be seen by observing that in 

certain instances the optimal throttle input (generated 

by the engine speed controller) is relatively high, even 

though the vehicle is stopped. Closer inspection shows 

that the DP controller has determined that overall fuel 

consumption is minimized by storing energy in the 

accumulator while the vehicle is stopped in preparation 

for the acceleration phase. This is an example of the 

types of control strategies which a designer may not 

include in the dynamic model’s controller during early 

development, but can have an impact on the system’s 

performance.     

 
Figure 13: Globally optimal state trajectories 

An engine operation map for the series hybrid is shown 

in Figure 14. This map includes the engine’s Brake 

Specific Fuel Consumption (BSFC) with lower numbers 

indicating more efficient engine operation. 

 
Figure 14: Globally optimal engine operation   

Superimposed on the BSFC map is a histogram of the 

series hybrid engine’s operation over the UDDS cycle, 

shown as white dots. These white dots indicate where 

the engine operated with their size proportional to the 
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cumulative duration of operation. This plot shows the 

series hybrid preferred to maintain a minimum engine 

speed except when operating near the engine’s region 

of peak efficiency.       

Implementing Dynamic 

Programming in the MATLAB 

Simulink Environment  

Up until this point discussion of the DP algorithm has 

been kept platform agnostic. However more insight can 

be gained by now reviewing a specific implementation 

of DP. MathWork’s MATLAB Simulink environment is 

one of the leading software packages for modeling and 

evaluating dynamic systems. In many cases the 

evaluation of novel system concepts begins with a 

Simulink model. A key advantage of the DP approach 

described in this paper is that it can be applied directly 

to these existing MATLAB Simulink based models with 

only a few minor modifications. This not only 

minimizes the time/effort required to apply DP, but also 

eliminates the need to greatly simplify the model (i.e. 

reduce fidelity) which may be necessary with matrix 

based state space formulations often used with other DP 

approaches.   

One specific implementation of DP developed by Czero 

personnel for the MATLAB Simulink environment 

contains three key components: a primary DP algorithm 

written as a MATLAB script, a separate MATLAB 

initialization file containing all the DP parameters for a 

specific case (states, controls, discretizations, time 

steps, solver settings, etc.), and a Simulink model 

containing the dynamic system model configured in a 

such a way as to minimize computational burden.  

When developing this DP implementation specific 

emphasis was placed not only on flexibility/ease of 

application, but importantly also on computational 

efficiency. As previously noted the computational 

expense of DP limits its usefulness for certain 

applications. The earlier example of a series hydraulic 

hybrid had 2116 states (𝜔eng: 46 𝑥 𝑃acm: 46), for each of 

which 966 controls  (𝜔engdes : 46 𝑥 𝛽1: 21) were evaluated. 

This required ~2.044 million dynamic simulations per 

time step, for which there were 1369, resulting in a total 

of ~2.798 billion dynamic simulations. Clearly any 

technique which speeds this process is of great interest. 

Fortunately, DP is highly parallelizable with every state 

and control evaluation within a given stage completely 

independent of one another.  

Parallelization, i.e. the process of performing tasks 

simultaneously rather than sequentially, can be used to 

significantly reduce overall DP runtime (wall time, 

though not total CPU time). Parallelization of the DP 

algorithm is accomplished by employing several 

techniques to simultaneously evaluate all state/control 

combinations within a given stage. The process begins 

by configuring the Simulink model in such a way that 

the system’s only required inputs are the desired 

state/control combination, the J* cost to finish matrix, 

and the current time step within the cycle. The model is 

then simulated for the prescribed duration and outputs 

a single value containing the total cost to finish the 

cycle from that state/control combination. In this way 

a single set of inputs results a single output value 

summarizing the optimal path (i.e. the embedding 

principle). From the primary DP algorithm’s 

perspective, the Simulink model simply converts the 

inputs provided to it (state/control combination) into 

an output value (cost to finish). If the primary DP 

algorithm were to evaluate each of the input 

combinations sequentially, the process would be quite 

slow. However as each of the input/output 

combinations are completely independent of one 

another, parallelization techniques can be used to 

significantly improve computational performance.    

As previously noted modeling the dynamic system in 

Simulink (as opposed to the matrix form of a traditional 

state space representation) has many advantages 

including increased fidelity and ease of 

implementation. Simulink, however, has the 

disadvantage of requiring substantial overhead (time) 

to initialize a model relative to the time required to 

simulate a single DP time step. This excessive overhead 

means that using Simulink to evaluate each 

state/control combination with an individual 

simulation (which is how Simulink is normally used) is 

computationally infeasible. This limitation can be 

addressed by placing the entire simulation model 

within a repeating subsystem block in Simulink (as 

proposed by Liu and Peng (2006)). The repeating 

subsystem block effectively duplicates the single plant 
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model as many times as specified. This enables a single 

Simulink model to be opened once, and then 

simultaneously evaluate several hundred thousand 

individual simulations. Effectively the primary DP 

algorithm can supply an array of state/control 

combinations to the Simulink model which then returns 

an array of output values, a significantly more 

computationally efficiency approach than discrete 

simulations. Depending on model complexity, 

simulation rates of 30-50k+ simulations per second per 

core have been achieved using this method. 

Runtime can further be improved by simultaneously 

running simulations on multiple processors. MATLAB’s 

Parallel Computing Toolbox enables a single primary 

algorithm to split the full set of simulations required for 

a DP stage into subsets which are then distributed to 

multiple processors (e.g. 8 on a PC, 64 on a server). 

Once the simulations are complete the results are sent 

back to the primary algorithm where the optimal 

controls are determined and recorded. An overview of 

the parallelized DP algorithm is shown in Figure 15. 

  
Figure 15: Parallelized dynamic programming flowchart 

Conclusion 

This works describes the application of discrete time 

dynamic programming to solve optimal state/control 

trajectory problems by applying the DP algorithm 

directly to dynamic simulations models. A key benefit 

of this approach is that it enables system designers to 

quickly and accurately assess the performance 

capabilities and characteristics of a potential 

architecture early in the design phase without 

necessarily having to understand how best to control it. 

By implementing DP early in the design phase system 

designers can: 

• Ensure the superior system architecture and 

component sizes are selected 

• Determine the performance capabilities of a system  

• Discover more effective control strategies   

• Minimize design iteration time and rework 

How Czero Can Help You 

Czero’s focus is on helping innovative companies solve 

the toughest engineering problems through deep 

expertise, creative thinking, and sophisticated analysis 

tools. Among many other capabilities, Czero can apply 

the DP algorithm described in this white paper either 

directly to existing MATLAB Simulink based dynamic 

simulation models, or develop the models from first 

principles and existing libraries. This work can be 

performed as either an independent analysis task, or as 

part of a larger R&D project led by Czero.    

Company Profile 

Czero develops innovations for the automotive, defense, 

oil and gas, renewable energy, and clean technology 

industries.  

Our award-winning engineers have 25+ years of 

experience working with innovation labs, startups, 

government agencies, and large OEMs in North 

America, Europe, Asia, and Australia. 

Concept-to-prototype engineering R&D  

Specializing in early-stage research and product 

development, Czero helps companies solve tough 

challenges and transform concepts into robust, tested 

prototypes of new technologies. 

Services 

• Mechanical design & solid modeling 

• Dynamic modeling & simulation 

• Finite element analysis (FEA) & computational fluid 

dynamics (CFD) 
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• Embedded controls 

• Prototyping and testing 

• Program & project management 

R&D Specialties  

• Advanced machine design 

• Mechanical, electromechanical  

and electrohydraulic systems 

• Energy conversion, efficiency and recovery 

• High-bandwidth hydraulics 

• Automotive powertrains 

• Heavy-duty trucks 

• Fuel systems 

• Valve systems 

• Hybrid vehicles 
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