

Michael Sprengel, PhD

Engineer/Analyst

Czero

Introduction

 Dynamic system modeling has revolutionized the way

in which novel system architectures are designed and

evaluated. Yet a system’s design (architecture, component

sizing, etc.) is only part of what determines a system’s

ultimate performance. How the system is controlled is

often of equal importance. This is especially true with

hybrid systems when power from multiple sources must

be managed, though it applies to any system in which

there are multiple state and control combinations which

yield the desired output. Commonly a design team will be

tasked with developing and employing a dynamic system

model to both select a system architecture, and size

components, with the goal of maximizing some

performance metric. Too often the control system’s design

is relegated to second place: a low importance task which

receives only the minimal effort and attention required to

achieve a working system model.

 Once to the point of comparing multiple system

architectures/component sizing, this lack of focus on the

control systems begs the question as to whether one

system design outperforms another due to an inherently

better configuration, or a more effective control strategy.

There is certainly a risk that a poor system design with

an effective control strategy could be chosen over a

superior system design with an ineffective control

strategy. While a control strategy may be improved and

refined in time to be implemented in the final system,

selection of a poor system design can be difficult to rectify

as a project progresses. The use of an ineffective control

scheme should not be viewed as negligence on part of the

design team, rather it must be understood that developing

a highly effective control scheme is often a challenging

task, especially when the development concerns novel

systems designs which are not well understood.

 An effective solution to the problem of poor system

control during the modeling and architecture selection

phase is to apply a globally optimal controller directly to

the dynamic simulation models. By using a globally

optimal control scheme the influence of control on system

performance can be eliminated, thereby enabling a fair

system comparison. The most effective means of

achieving optimal system control is through a technique

known as dynamic programming. This white paper

discusses the benefits of using dynamic programming as

a design tool throughout a product’s development, using

a hybrid powertrain as an illustrative example.

Improving System Design and
Performance Through

Globally Optimal Control

Advantages of Dynamic Programming

Dynamic programming (DP) is powerful analytical tool

which yields significant benefits when applied to dynamic

simulation models. Some uses of DP include:

• Determining a system’s best possible performance.

• Eliminating the influence of controls on system

efficiency.

• Ensuring a fair and impartial comparison between

system architectures and component sizing.

• Eliminating the risk of arriving at the wrong

conclusion due to a poor system control.

• Discovering effective, but perhaps counterintuitive,

control schemes.

• Developing control strategies based on the globally

optimal results.

• Baselining implementable control strategies against

the globally optimal solution.

Dynamic programming has one key benefit over other

optimal control approaches:

• Guarantees a globally optimal state/control trajectory,

down to the level the system is discretized to.

Dynamic programming also has several drawbacks which

must be considered, including:

• Requires complete a-priori cycle knowledge (i.e. full

knowledge of the upcoming cycle). As such DP is not

an implementable control strategy.

• Is computationally expensive to solve as the required

number of calculations increase exponentially with

each additional state and control evaluated (curse of

dimensionality). This disadvantage is somewhat

mitigated by the highly parallelizable nature of DP.

Czero White Paper www.czero-solutions.com 2

Why do Effective Control Strategies

Matter when Modeling?

High fidelity dynamic simulation models have become

an essential and enabling tool in the development of

innovative system architectures and technologies. Yet

the dynamic model itself, which describes how a

system’s states will respond to a given set of control

efforts, is only part of the story. Of equal importance is

often how the system is controlled.

Take a power-split electric hybrid vehicle as an

example. For a driver, instantaneous powertrain

performance may be evaluated simply against its ability

to provide the desired level of torque to the wheels

when requested. Yet the system designers know that

this requested torque may be achieved in numerous

ways by varying the power split between the

mechanical and electrical paths. From a strict

instantaneous performance perspective, the choice of

optimal power split is likely inconsequential. However,

from an instantaneous efficiency perspective, the

efficiency of each component (e.g. engine, battery,

electric motors, etc.) within the powertrain must be

considered holistically to determine the optimal power

split. Figure 1 illustrates this point with a comparison

between transmission efficiency and overall powertrain

fuel consumption for an output-coupled power-split

transmission operating under steady state conditions

with no power being absorbed or supplied by the energy

storage device (Sprengel, 2015).

Figure 1: Powertrain vs. transmission efficiency

In this case it is more effective to operate the

transmission in the less efficient power recirculation

mode so that the overall powertrain operates in a more

fuel-efficient manner.

While instantaneous optimization may be able to

provide an optimal operating point for any given

instance in time (as could be achieved by using Figure

1), this is often different from the globally optimal time

domain solution. Returning to the electric power-split

vehicle example, at a given point in time the

instantaneously optimal control strategy from a fuel

economy perspective may be to meet the required

torque by maximizing the power discharged from the

battery. However, such a control strategy could deplete

the battery before the vehicle arrives at its destination,

causing the powertrain to rely solely on the engine for

the remainder of the trip. This would almost certainly

decrease the overall cycle efficiency relative to what

could have been achieved if the powertrain were more

effectively controlled. The system designers must

balance not only the power split between the

mechanical and electric paths to achieve the highest

possible powertrain efficiency, but must also balance

the charging and discharging of the battery to maximize

overall cycle efficiency.

These efforts are further complicated by the need to

account for and control the system relative to events

which have not yet occurred. For example, there will

likely be different optimal control strategies for a

vehicle which is about to drive up a long hill, versus one

which is about to come to a rapid stop. To maximize

cycle efficiency the powertrain must begin preparing

for each of these events before they occur (e.g. storing

extra energy before driving up the hill, or discharging

energy before braking to ensure adequate capacity

exists to capture and store the vehicle’s kinetic energy).

The use of complete a-priori cycle knowledge is a key to

DP’s ability to determine and guarantee globally

optimal solutions as will be discussed in the next

section.

To further illustrate the influence of control on system

performance, Table 1 show a comparison between two

power management controllers relative to the globally

optimal solution for a plug-in electric hybrid SUV

achieved through DP (Gong et al., 2008).

Czero White Paper www.czero-solutions.com 3

Table 1: Fuel economy comparison (Gong et al., 2008)

Drive Cycle UDDS1 US062
ECE-

EUDC3

HW-

FET4

Control Strategy Fuel Economy [l/100 km]

DP Charge Depletion 4.27 4.47 3.76 2.88

Depletion Sustenance 6.10 9.80 6.30 5.70

Rule-Based 4.30 10.50 7.80 7.90

Percent Decrease in Fuel

Economy Relative to DP [%]

DP Charge Depletion - - - -

Depletion Sustenance 42.9 119.2 67.6 97.9

Rule-Based 0.7 134.9 107.4 174.3

1. Urban Dynamometer Driving Schedule
2. US06 Supplemental Federal Test Procedure

3. Economic Commission for Europe – Extra Urban Driving Cycle

4. Highway Fuel Economy Test

Clearly apparent here are the significant differences

between the globally optimal DP strategy, and the other

two control strategies. It is also worth noting that for

the UDDS cycle the rule-based control scheme achieved

results very close to the globally optimal solution. This

demonstrates that implementable controllers, when

well designed, can also achieve near optimal

performance. Yet when this same rule-based control

scheme was evaluated on cycles other than the UDDS

cycle, it achieved significantly worse results

highlighting its limitations. In fact, one could imagine

that if such a hybrid vehicle were controlled poorly, that

the resulting fuel economy could be worse than a

convention non-hybrid vehicle. This could lead to an

incorrect perception of the technology when in fact the

control scheme, not the base system architecture, was

causing the poor system performance.

The purpose of this discussion on power management

for hybrid vehicles is not intended to explore the pros

and cons of various control strategies, but rather to

illustrate the complexity of such control and how

ineffective control schemes may provide an inaccurate

perception of a system during the modeling and

architecture selection phase. While this paper

illustrates DP’s utility for a hybrid vehicle power

management, optimal control through DP can be

applied to many other applications as well. Ultimately

any system whose states and controls are not

deterministic (i.e. fully defined) may benefit from DP.

How Dynamic Programming Works

Dynamic programming is based Richard Bellman’s

Principle of Optimality: “An optimal policy has the

property that whatever the initial state and initial

decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting

from the first decision.” (Bellman, 1957) Rephrased:

Optimization of the future does not depend on what

occurred in the past. This basic principle has been

extended and implemented in a wide variety of optimal

control algorithms. Many of these approaches rely on

solving the Hamilton–Jacobi–Bellman partial

differential equation for continuous time systems.

However, using partial differential equations often

requires a rigid formulation of the state space equations

which largely precludes the use of lookup tables, non-

continuous functions, and other inequalities and

constraints which are commonly used in dynamic

simulation models. Another class of DP algorithms

discretize the system and implement a numerical

approach to solve the optimal control problem. It is this

discretized DP formulation which is well suited for the

class of dynamic system models discussed in this work.

The basic operation of a discretized DP algorithm can

be explained by first applying it to a multistage

decision-making process. Bellman’s principle of

optimality is explained graphically through Figure 2.

Figure 2: Multistage decision process

In this example J represents the cost of transition

between discrete states a, b, c, and d. Here two possible

paths exist between states a and d: a-b-c-d and a-b-d

with the optimal path (denoted by *) defined as:

𝐽ad
∗ = 𝐽ab +min(𝐽bcd + 𝐽bd)

Applying the principle of optimality yields the assertion

that if b-c-d is the optimal path between b-d then a-b-c-

d is the optimal path between a-d. While this may

Czero White Paper www.czero-solutions.com 4

appear to be a trivial solution, when applied to larger

and more complex problems it has powerful

ramifications.

Bellman formed a computational method (algorithm)

known as DP by extending his principle of optimality to

a sequence of decisions. By using the concept that

wherever an optimization is begun, the remaining path

must be optimal, Bellman subdivided complex

multistage decision problems into a series of simpler

one stage sub problems. Beginning with the final state,

Bellman worked backwards through the decision

process to obtain the globally optimal solution with a

computational expense far less than direct

enumeration. This process can be explained graphically

using Figure 3. Here the transitional costs between each

state have been given numerical values as denoted on

the figure.

Figure 3: Multistage DP example, step 1

Using direct enumeration requires the evaluation of all

8 possible paths between a and h:

𝐽𝑎ℎ
∗

= 𝑚𝑖𝑛

(

𝐽𝑎𝑏 + 𝐽𝑏𝑑 + 𝐽𝑑𝑓 + 𝐽𝑓ℎ , 𝐽𝑎𝑐 + 𝐽𝑐𝑑 + 𝐽𝑑𝑓 + 𝐽𝑓ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑑 + 𝐽𝑑𝑔 + 𝐽𝑔ℎ, 𝐽𝑎𝑐 + 𝐽𝑐𝑑 + 𝐽𝑑𝑔 + 𝐽𝑔ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑒 + 𝐽𝑒𝑓 + 𝐽𝑓ℎ , 𝐽𝑎𝑐 + 𝐽𝑐𝑒 + 𝐽𝑒𝑓 + 𝐽𝑓ℎ
𝐽𝑎𝑏 + 𝐽𝑏𝑒 + 𝐽𝑒𝑔 + 𝐽𝑔ℎ, 𝐽𝑎𝑐 + 𝐽𝑐𝑒 + 𝐽𝑒𝑔 + 𝐽𝑔ℎ)

DP takes a different approach and subdivides the

problem into multiple stages (Figure 4). The DP

algorithm begins one stage before the final stage (Stage

4) and records the optimal transitional cost J* between

each state in the current stage, and the final stage

(Stage 5) (a trivial process at this point as only one

possible decision exists for each state).

Figure 4: Multistage DP example, step 2

Next the DP algorithm steps back one stage (to Stage 3)

and repeats the optimization process. However instead

of optimizing the path all the way from Stage 3 to Stage

5, the DP algorithm has only to optimize between Stage

3 and Stage 4 as the optimal path from Stage 4 to Stage

5 has already been determined and recorded. The cost

which is recorded at each state in Stage 3 contains not

only the transitional cost between Stage 3 and Stage 4,

but also the cost to finish from Stage 4 to the final stage.

This cumulative cost to finish is one of the key concepts

of DP and is known as the embedding principle. It is this

running tally of the optimal cost to finish which enables

the multistage decision process to be subdivided into a

series of one stage sub problems. This process of

optimizing each stage in turn repeats recursively until

the initial decision is reached (Figure 5).

Figure 5: Multistage DP example, step 3

Once the initial state is reached, the backwards

stepping component of the DP algorithm is concluded.

In order to extract the optimal decision sequence, one

needs merely to follow the optimal decisions forward

from state to state. DP tabulates not only the optimal

decision path from the first state to the last, but also the

optimal decision path from any state to the final state.

Bellman’s principle of optimality provides a sufficient

condition for optimality. That is because all possible

Czero White Paper www.czero-solutions.com 5

optimal candidate decision paths are analyzed, the

optimal path found must be the globally optimal path.

More insight into global optimality can be found by once

more investigating the graphical example. Now a

forward stepping instantaneous optimization algorithm

has been used to find the instantaneously optimal path

from state a to h. At each state this algorithm chooses

the decision with the lowest instantaneous cost yielding

the dashed path shown in Figure 6.

Figure 6: Multistage DP example, step 4

Here the instantaneous optimization algorithm

followed the path a-b-d-f-h with a cost of 10, while the

globally optimal path a-b-d-g-h found by DP (bold lines)

resulted in a cost of 7. Of interest is the path taken by

both algorithms from Stage 3 to Stage 4. Here both

algorithms began on State d, but while the

instantaneous optimal path d-f follows the lowest cost

decision from Stage 3 to Stage 4, the globally optimal

path d-g follows a trajectory with a higher decision cost.

This example illustrates that a globally optimal path

may require locally suboptimal decisions to yield the

minimum overall cost.

DP’s predominant advantage over direct enumeration is

its substantial reduction in computational expense.

Table 2 compares the computation expense of both

methods assuming S=10 states and C=5 controls. Even

though the number of stages, states, and controls are at

least an order of magnitude smaller than the values

commonly required in DP evaluations of dynamic

systems, the computational expense of direct

enumeration is already infeasible.

Table 2: Comparison of computational expense between

DP and direct enumeration (for 10 states and 5 controls)

Number

of

stages

Calculations

required by

DP

Calculations required by

direct enumeration

1 50 50

10 500 122,070,300

25 1,250 3,725,290,298,461,914,050

𝑁 𝑆 ∙ 𝐶 ∙ 𝑁 ∑[𝑆 ∙ 𝐶𝐾]

𝑁

𝐾=1

Applying Dynamic Programming to

Discrete Time Optimal Control

Thus far a general overview of DP has been given. This

process will now be expanded upon for the specific case

of discrete time optimal control. Discrete time DP

requires a system to be expressed using a state space

representation. In the state space system key system

parameters and controls are represented by state

variables xi(t), and control inputs ui(t), respectively.

The state variables represent the minimum number of

parameters which must be known to fully describe a

system at any point in time, while control inputs refer

to system inputs which serve to alter these states.

Together the set of all states and controls for a system

are expressed through state vector X(t) and control

vector U(t).

𝑋(𝑡) ≡ [𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝑛(𝑡)]
𝑇

𝑈(𝑡) ≡ [𝑢1(𝑡) 𝑢2(𝑡) ⋯ 𝑢𝑛(𝑡)]
𝑇

When the state and controls are related by 1st order

differential equations, a nonlinear time varying

physical system can be described by the state equation:

𝑥̇(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡), 𝑡)

However, it is also permissible to describe the system

through any type of model (e.g. lumped parameter,

distributed parameter, black box, etc.) as long as the

value of appropriate states and controls can be

extracted and applied at the necessary points in time.

DP requires both the continuous time and states of a

continuous time optimal control problem to be

Czero White Paper www.czero-solutions.com 6

discretized. The discretized time can be equated to the

stages in the aforementioned graphical example, while

the system’s discretized states represent the discrete

states within each stage. DP does not require controls

to be discretized, however doing so generally improves

computational efficiency for certain classes of

problems.

The principle of optimally is expressed mathematically

for discrete time dynamic programming through the

functional recurrence equation of DP:

𝐽𝑁−𝐾,𝑁
∗ (𝑥(𝑁 − 𝐾))

= 𝑚𝑖𝑛
𝑢(𝑁−𝐾)

{𝑔𝐷 (𝑎𝐷(𝑥(𝑁 − 𝐾), 𝑢(𝑁 − 𝐾)))
⏞

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡

+ 𝐽𝑁−(𝐾−1),𝑁
∗ (𝑎𝐷(𝑥(𝑁 − 𝐾), 𝑢(𝑁 − 𝐾)))
⏞

𝐶𝑜𝑠𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

}

Where N is the number of stages, K is the stage counter,

gD is the transitional cost function to be minimized

between the current and subsequent state, and aD

represents the system dynamics.

To better illustrate the application of DP to

state/control trajectory optimization, a series hydraulic

hybrid transmission (Figure 7) will now serve as a

reference system.

Figure 7: Series hydraulic hybrid

Appling DP to the series hybrid begins by forming the

state and control vectors:

𝑋 ≡ [𝜔𝑒𝑛𝑔 𝜔𝑤ℎ𝑒𝑒𝑙 𝑃𝑎𝑐𝑚 𝑃𝐿𝑃]
𝑇
 𝑈 ≡ [𝑢𝑒𝑛𝑔 𝛽1 𝛽2]

𝑇

Where ωeng is the engine speed, ωwheel is the wheel

speed, pacm is the pressure of the high-pressure

accumulator, pLP is the pressure of the low-pressure

system, ueng is the engine throttle, and 1, 2 are the

displacements of Units 1 and 2 respectively.

As the computational expense of DP grows

exponentially with the addition of each state and

control, it is highly desirable to eliminate superfluous

states and controls whenever possible. In this example

the powertrain will be optimized over a predefined

drive cycle. As such the wheel speed ωwheel is known as

a function of time and can thus be eliminated from the

state vector. The required wheel torque can also be

determined as a function of time using the predefined

drive cycle and a vehicle dynamics model. Consequently

Unit 2’s displacement 2 becomes a function of time and

accumulator pressure and is likewise removed from the

control vector. Finally, to reduce computational

expense, it is assumed that the low-pressure system pLP

maintains a constant set pressure. These

simplifications result in the following reduced state

space vectors:

𝑋 ≡ [𝜔𝑒𝑛𝑔 𝑃𝑎𝑐𝑚]
𝑇
 𝑈 ≡ [𝑢𝑒𝑛𝑔 𝛽1]

𝑇

Configuring the system for DP continues with

determining how to discretize the continuous states and

time (i.e. split continuous variables into the descrete set

of values requried by DP). This is an important step as

the level of discretization has a direct impact on both

solution accuracy (which roughly converges

asymptotically as discretization increases) and

computational expense (which increases linearly as

discretization increases). Thus close attention must be

paid to the level of discretization in order to balance

acceptable solution accuracy with feasible

computational expense.

When discretizing states the concept of accessibility is

useful. Accessibility refers to the ability of one state to

transition to other states within a single time step. A

state with low accessibility may only be capable of

transitioning to a few different states (or maybe none

at all) within a given time step. Whereas a state with

high accessibility would be able to reach many different

states within the same time frame. Using the series

hydraulic hybrid as an example, the maximum change

in system pressure during a single DP time step is

dicated by system dnyamics. The graularity of the

system’s pressure discritization must therefore be

sufficently fine as to allow the system pressure to move

Czero White Paper www.czero-solutions.com 7

between states within a single DP time step. Failure to

sufficently discritizte system pressure could result in

the DP algorithm falsly indicating that a constant

system pressure was optimal, when in acutality this

finding was a result of poor state discritzation. An

example of accessibility is given in Figure 8.

Figure 8: Dynamic programming accessibility

In general, states which change slowly required a

higher level of discretization than states which change

quickly. For the series hybrid example the following

state discretizations are reasonable:

𝑋 ≡ [
𝜔𝑒𝑛𝑔
𝑃𝑎𝑐𝑚

] [
750 − 4000 𝑟𝑝𝑚
145 − 370 𝑏𝑎𝑟

]

[
750: 25: 1000, 1050: 50: 1500, 1600: 100: 4000

145: 5: 370
]

Note the engine speed has a non-uniform discretization.

This enables the designer to achieve greater accuracy in

areas which are of greater interest (e.g. low engine

speed) while reducing computational expense in areas

which are unlikely to see much operation (e.g. high

engine speed).

Another factor which must be determined is the degree

to which time is discretized. While a finer time

discretization will improve solution accuracy, it will

also limit how much a given state can change within a

time step (thus requiring an even finer state

discretization). Each discrete time step becomes a stage

within the DP algorithm where controls are optimized

and held constant for the entire time step. This does not

mean the model (equations) must be solved using the

DP time step. Rather any time step may be used for the

model solvers so long as the model is simulated for the

duration of the DP time step.

An example of a backwards stepping time discretization

is shown in Figure 9. Note the time discretization

shown in this figure is highly exaggerated to

demonstrate the concept; the time discretization should

actually be substantially smaller to accurately capture

the drive cycle dynamics.

Figure 9: Dynamic programming time discretization

For powertrain optimization a one second DP time step

is generally appropriate due to the system’s relatively

slow dynamics. The example series hybrid transmission

will be optimized over the industry standard UDDS

cycle. This 1369 second long drive cycle (Figure 10) is

indicative of urban driving and well suited for

evaluating hybrid powertrains.

Figure 10: Urban Dynamometer Driving Schedule

With the state and time discretizations finalized,

several matrices must now be initialized. These include

the optimal cost matrix J*, and two optimal control

matrices U* (one for each state). Note the dimensions

of the matrices correspond to the discretization of the

state and time vectors (t:1370, eng:46, Pacm:46).

𝐽𝑁,𝑥1,𝑥2
∗ = 𝐽1370,46,46

∗ = []

𝑈(1)𝑁,𝑥1,𝑥2
∗ = 𝑈(1)1370,46,46

∗ = []

𝑈(2)𝑁,𝑥1,𝑥2
∗ = 𝑈(2)1370,46,46

∗ = []

DP optimizes the controls for each state at every DP

time step. While many different optimization

techniques would be valid for solving a single step of

the functional recurrence equation, a full factorial

search of discretized controls has proven to be the

fastest approach for the DP algorithm used in this work.

Controls are discretized using similar principles as the

states. However, states which change fast (i.e. a stiff

system) generally need finer control discretization than

Czero White Paper www.czero-solutions.com 8

states which change slowly to enable accurate

optimization. Engine dynamics are a good example of a

stiff system: even small discrepancies between the

combustion and load torques will result in a significant

change in engine speed over the DP time step. Such a

system would require a very high level of discretization

on the throttle to enable a constant engine speed to be

maintained in the face of varying loads. An alternative

used in this work is to replace the throttle control with

a desired engine speed 𝜔eng_des. The enables a controller

within the simulation model to continuously control the

engine throttle to track the reference engine speed, all

while requiring less control discretization. Together the

controls were discretized as follows:

𝑈 ≡ [
𝜔𝑒𝑛𝑔_𝑑𝑒𝑠
𝛽1

] [
750 − 4000 𝑟𝑝𝑚
0 − 100%

]

 [
750: 25: 1000, 1050: 50: 1500, 1600: 100: 4000

0: 5: 100
]

With the transmission model constructed, states and

controls identified and discretized, and the

performance metric specified (minimizing fuel

consumption), the DP algorithm begins one time step

before the final time step. The model is then initialized

at each combination of discrete states

(𝜔eng(46) 𝑥 𝑃acm(46) = 2116) before every combination

of discrete controls is applied in turn

(𝜔eng_des(46) 𝑥 𝛽1(21) = 966) and the system is

simulated forward in time for one DP time step.

For this stage (N-1) the total cost being minimized is

simply the transitional fuel consumption between the

current stage and the final stage. After all sets of

controls are applied for a specific state, the DP

algorithm selects and records the minimum cost for

that specific state in the J* matrix. The associated

optimal control values (𝜔eng_des, 𝛽1), which resulted in

this minimum cost, are also recorded in their respective

optimal control matrices U* for the state which was just

evaluated. This projection of states by means of various

controls is illustrated in Figure 11.

The optimal controls are those which minimize both the

transitional fuel consumption, and the cost to reach the

end of the cycle. (While at stage N-1 the transitional fuel

consumption, and the cost to reach the end of the cycle,

are one in the same. In subsequent time steps (N-2, N-

3, …) the transitional fuel consumption will be

determined based on where the project state lands on

the cost to finish matrix J*).

Figure 11: Dynamic programming state projection

Once all the states have been optimized, the DP

algorithm steps back in time to stage (N-2) and begins

again. Once again the model is initialized at a given

state and controls are applied and simulated for a single

time step. However now the resulting states after the

DP time step (now at stage N-1) are used to determine

the cost to finish by referencing the optimal cost to

finish from time step N-1 to the final time step

contained within the J* matrix.

This recursive process is repeated from stage to stage

until the initial time step is reached, thus concluding

the backwards stepping portion of the DP algorithm.

Once the initial time step is reached both the J* and U*

matrices are filled. However, the J* matrix is of little

use as the cost to finish values provide little

information regarding the optimal path through the

states. The only information which can be extracted

from the J* matrix is the optimal initial states and the

minimum cycle cost. In order to determine the optimal

state trajectories the model must be run forward in

time using the optimal U* controls to control the

transmission. This is most easily accomplished by

constructing a lookup table for the U* matrices where

the current states and time are inputs, and the controls

are outputs. This forward-facing process further

improves accuracy by continually interpolating

between the discrete points optimized in the backwards

stepping algorithm. When the DP algorithm is followed

as specified, the results are guaranteed to be globally

optimal down to the level the system is discretized. A

sufficient level of discretization should be used such

Czero White Paper www.czero-solutions.com 9

that the DP results nearly converge with the true

globally optimal solution. Determining the appropriate

levels of discretization comes from experience. One

simple (though computationally expensive) method of

determining convergence is to increase the level of

discretization and see how close the two results are.

A flowchart of the DP algorithm is shown in Figure 12.

Figure 12: Dynamic programming flowchart

The results of this final run are shown in Figure 13 for

the series hydraulic hybrid (Sprengel and Ivantysynova,

2014). An example of how the DP algorithm may use a-

prior cycle knowledge can be seen by observing that in

certain instances the optimal throttle input (generated

by the engine speed controller) is relatively high, even

though the vehicle is stopped. Closer inspection shows

that the DP controller has determined that overall fuel

consumption is minimized by storing energy in the

accumulator while the vehicle is stopped in preparation

for the acceleration phase. This is an example of the

types of control strategies which a designer may not

include in the dynamic model’s controller during early

development, but can have an impact on the system’s

performance.

Figure 13: Globally optimal state trajectories

An engine operation map for the series hybrid is shown

in Figure 14. This map includes the engine’s Brake

Specific Fuel Consumption (BSFC) with lower numbers

indicating more efficient engine operation.

Figure 14: Globally optimal engine operation

Superimposed on the BSFC map is a histogram of the

series hybrid engine’s operation over the UDDS cycle,

shown as white dots. These white dots indicate where

the engine operated with their size proportional to the

Czero White Paper www.czero-solutions.com 10

cumulative duration of operation. This plot shows the

series hybrid preferred to maintain a minimum engine

speed except when operating near the engine’s region

of peak efficiency.

Implementing Dynamic

Programming in the MATLAB

Simulink Environment

Up until this point discussion of the DP algorithm has

been kept platform agnostic. However more insight can

be gained by now reviewing a specific implementation

of DP. MathWork’s MATLAB Simulink environment is

one of the leading software packages for modeling and

evaluating dynamic systems. In many cases the

evaluation of novel system concepts begins with a

Simulink model. A key advantage of the DP approach

described in this paper is that it can be applied directly

to these existing MATLAB Simulink based models with

only a few minor modifications. This not only

minimizes the time/effort required to apply DP, but also

eliminates the need to greatly simplify the model (i.e.

reduce fidelity) which may be necessary with matrix

based state space formulations often used with other DP

approaches.

One specific implementation of DP developed by Czero

personnel for the MATLAB Simulink environment

contains three key components: a primary DP algorithm

written as a MATLAB script, a separate MATLAB

initialization file containing all the DP parameters for a

specific case (states, controls, discretizations, time

steps, solver settings, etc.), and a Simulink model

containing the dynamic system model configured in a

such a way as to minimize computational burden.

When developing this DP implementation specific

emphasis was placed not only on flexibility/ease of

application, but importantly also on computational

efficiency. As previously noted the computational

expense of DP limits its usefulness for certain

applications. The earlier example of a series hydraulic

hybrid had 2116 states (𝜔eng: 46 𝑥 𝑃acm: 46), for each of

which 966 controls (𝜔engdes : 46 𝑥 𝛽1: 21) were evaluated.

This required ~2.044 million dynamic simulations per

time step, for which there were 1369, resulting in a total

of ~2.798 billion dynamic simulations. Clearly any

technique which speeds this process is of great interest.

Fortunately, DP is highly parallelizable with every state

and control evaluation within a given stage completely

independent of one another.

Parallelization, i.e. the process of performing tasks

simultaneously rather than sequentially, can be used to

significantly reduce overall DP runtime (wall time,

though not total CPU time). Parallelization of the DP

algorithm is accomplished by employing several

techniques to simultaneously evaluate all state/control

combinations within a given stage. The process begins

by configuring the Simulink model in such a way that

the system’s only required inputs are the desired

state/control combination, the J* cost to finish matrix,

and the current time step within the cycle. The model is

then simulated for the prescribed duration and outputs

a single value containing the total cost to finish the

cycle from that state/control combination. In this way

a single set of inputs results a single output value

summarizing the optimal path (i.e. the embedding

principle). From the primary DP algorithm’s

perspective, the Simulink model simply converts the

inputs provided to it (state/control combination) into

an output value (cost to finish). If the primary DP

algorithm were to evaluate each of the input

combinations sequentially, the process would be quite

slow. However as each of the input/output

combinations are completely independent of one

another, parallelization techniques can be used to

significantly improve computational performance.

As previously noted modeling the dynamic system in

Simulink (as opposed to the matrix form of a traditional

state space representation) has many advantages

including increased fidelity and ease of

implementation. Simulink, however, has the

disadvantage of requiring substantial overhead (time)

to initialize a model relative to the time required to

simulate a single DP time step. This excessive overhead

means that using Simulink to evaluate each

state/control combination with an individual

simulation (which is how Simulink is normally used) is

computationally infeasible. This limitation can be

addressed by placing the entire simulation model

within a repeating subsystem block in Simulink (as

proposed by Liu and Peng (2006)). The repeating

subsystem block effectively duplicates the single plant

Czero White Paper www.czero-solutions.com 11

model as many times as specified. This enables a single

Simulink model to be opened once, and then

simultaneously evaluate several hundred thousand

individual simulations. Effectively the primary DP

algorithm can supply an array of state/control

combinations to the Simulink model which then returns

an array of output values, a significantly more

computationally efficiency approach than discrete

simulations. Depending on model complexity,

simulation rates of 30-50k+ simulations per second per

core have been achieved using this method.

Runtime can further be improved by simultaneously

running simulations on multiple processors. MATLAB’s

Parallel Computing Toolbox enables a single primary

algorithm to split the full set of simulations required for

a DP stage into subsets which are then distributed to

multiple processors (e.g. 8 on a PC, 64 on a server).

Once the simulations are complete the results are sent

back to the primary algorithm where the optimal

controls are determined and recorded. An overview of

the parallelized DP algorithm is shown in Figure 15.

Figure 15: Parallelized dynamic programming flowchart

Conclusion

This works describes the application of discrete time

dynamic programming to solve optimal state/control

trajectory problems by applying the DP algorithm

directly to dynamic simulations models. A key benefit

of this approach is that it enables system designers to

quickly and accurately assess the performance

capabilities and characteristics of a potential

architecture early in the design phase without

necessarily having to understand how best to control it.

By implementing DP early in the design phase system

designers can:

• Ensure the superior system architecture and

component sizes are selected

• Determine the performance capabilities of a system

• Discover more effective control strategies

• Minimize design iteration time and rework

How Czero Can Help You

Czero’s focus is on helping innovative companies solve

the toughest engineering problems through deep

expertise, creative thinking, and sophisticated analysis

tools. Among many other capabilities, Czero can apply

the DP algorithm described in this white paper either

directly to existing MATLAB Simulink based dynamic

simulation models, or develop the models from first

principles and existing libraries. This work can be

performed as either an independent analysis task, or as

part of a larger R&D project led by Czero.

Company Profile

Czero develops innovations for the automotive, defense,

oil and gas, renewable energy, and clean technology

industries.

Our award-winning engineers have 25+ years of

experience working with innovation labs, startups,

government agencies, and large OEMs in North

America, Europe, Asia, and Australia.

Concept-to-prototype engineering R&D

Specializing in early-stage research and product

development, Czero helps companies solve tough

challenges and transform concepts into robust, tested

prototypes of new technologies.

Services

• Mechanical design & solid modeling

• Dynamic modeling & simulation

• Finite element analysis (FEA) & computational fluid

dynamics (CFD)

Czero White Paper www.czero-solutions.com 12

• Embedded controls

• Prototyping and testing

• Program & project management

R&D Specialties

• Advanced machine design

• Mechanical, electromechanical

and electrohydraulic systems

• Energy conversion, efficiency and recovery

• High-bandwidth hydraulics

• Automotive powertrains

• Heavy-duty trucks

• Fuel systems

• Valve systems

• Hybrid vehicles

References

Bellman, R. 1956. Dynamic Programming and Lagrange

Multipliers. Proceedings of the National Academy of

Sciences of the United States of America, 42(10), 767.

Gong, Q., Li, Y. and Peng, Z.R., 2008. Trip-based

optimal power management of plug-in hybrid electric

vehicles. IEEE Transactions on vehicular technology,

57(6), pp.3393-3401.

Liu, J. and Peng, H. 2006. Control Optimization for a

Power-Split Hybrid Vehicle. American Control

Conference.

Sprengel, M. and Ivantysynova, M. 2014. Recent

Developments in a Novel Blended Hydraulic Hybrid

Transmission. SAE 2014 Commercial Vehicle

Engineering Congress. Oct. 7-9, 2014. Rosemont, IL,

USA. SAE Technical Paper 2014-01-2399.

Sprengel, M. 2015. Influence of Architecture Design on

the Performance and Fuel Efficiency of Hydraulic

Hybrid Transmissions. PhD thesis, Purdue University.

About the Author

Dr. Michael Sprengel is an R&D engineer and analyst at

Czero in Fort Collins, Colorado. His focus is on the

design, simulation, control, and optimization of novel

and energy efficient systems. He has a BS in Mechanical

Engineering from the Missouri University of Science

and Technology, and both a MS in Mechanical

Engineering, and a PhD, from Purdue University. While

at Purdue he conducted his research at the Maha Fluid

Power Research Center investigating novel and energy

efficient hydraulic hybrid architectures and control

strategies for on-road and off-highway applications.

